

What is Building Performance?

Based on control theory and the assumption that a building is a system:

Building Performance may be defined as:

A set of measured responses of a building, as a system, to anticipated and actual forcing functions

where:

- <u>Measured responses</u> are valid and reliable parameters and values of human response, occupant exposure, system performance, and economic performance
- Forcing functions are known physical or social forces that are likely to perturb the building system, to which the response functions occur.

Background

Why is UFAD Popular?

- If power, communications and other systems are floor based, placing HVAC under the floor seems a logical additional step.
- Using the space under the floor as a pressurized plenum rather than using overhead or underfloor ductwork seems attractive:
 - Lower cost of sheet metal.
 - Easier coordination between HVAC and other systems.
 - Less labor to change supply air distribution when changes are made to the occupied space.

Background

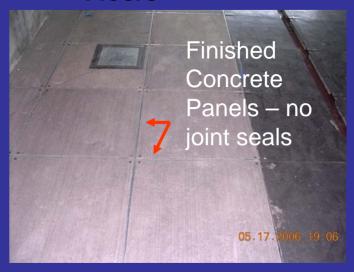
- Why is design for UFAD an issue?
 - Concerns include:
 - Latent cooling capacities
 - Accumulation of particulate matter and moisture
 - Air leakage in pressurized floor plenums
 - Testing and Balancing (TAB) difficulties
 - Compartmentalization and Isolation during incidents
 - Transient heat transfer through plenum surfaces
 - Energy consumption
 - Lack of Commissioning Procedures for UFAD

Background

- Why is Design for UFAD an Issue?
 - GSA has over 8,000,000 square feet of space in use, in use and under construction using UFAD.
 - In recently completed GSA buildings, the UFAD has not performed as expected.
 - The private sector has approximately 100,000,000 square feet in use, in design, and under construction using UFAD.
 - In a recent survey of private sector buildings, mixed reactions to the performance of UFAD systems was reported (in NCEMBT report to DOE).

Need for Air Tightness

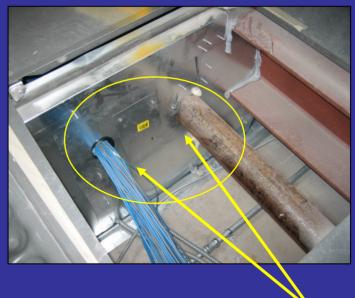
- UFAD Plenum typically at 0.05 – 0.10 in. wg (12 – 25 Pa)
- CAD typical leakage of 1.5% @ 0.5 in. wg (125 Pa)
- Both systems provide ~
 1.0 cfm/ft² floor area
- Air Leakage affects comfort, energy, materials, safety, security
- Goal is ≤ 10% air leakage at design s.p.


View of Courthouse Library with diffusers taped for testing

Two Categories of Air Leakage

- Category 1: General Construction Leaks
 - From plenum into other building cavities
 - Air is wasted or short cycled to Return Air or to Conditioned Spaces

- Category 2: Product Leaks
 - Through RAF into Conditioned Spaces
 - Pathways include:
 - Panel and edge joints
 - Diffusers losses
 - IT/Power Boxes in Floors



Category 1 Examples

 Leakage around and in annular spaces in conduit:

Conduit through floor slab to Space below UFAD

Conduit through plenum bulkhead

Category 2 Examples

Leaks of conditioned air from the plenum through components of the raised access floor system:

- Floor panel seams and edge closures
- Electric power connection and outlet service units
- Communications and data service units
- Air diffusers that do not close tightly

Methods of Air Leakage Testing

- Mockup Test Prior to permanent construction
- Permanent System Test (Substantial Completion)
- Smoke Test to locate air leakage pathways

Mockup Tests

- Prior to Permanent Construction
 - 1,000 4,000 ft² area
 - Determine Cat 1 and
 2 air leakage rates at design s.p.
 - Use separate fan
 - Establish steadystate s.p. before obtaining data

Permanent Systems Tests

- Substantial Completion of Zone
 - AHU Zone up to 25,000 ft²
 - Verify Mockup tests results or
 - Determine Category
 1 and 2 leakage rates
 - Use actual AHU with VFD at design s.p.
 - Establish design steady-state s.p. before obtaining data

One of several Thermostatic zones Served by AHU

Typical AHU
With VFD and
Coil bypass for
UFAD

Smoke Tests

- Purpose: to locate air leakage pathways
 - Conduct duringMockup Tests
 - For Permanent
 Systems Tests,
 conduct and purge
 during unoccupied
 periods
 - Use "theatrical" smoke generator (nontoxic)

Smoke induced into calibrated fan inlet

Plenum Air Leakage

 Results of Air Leakage tests showed plenum leakage rates of 30 -200% of design airflow rates at plenum static pressures of 0.07 in. w.g. (17 Pa)

View of Library in FCH-1 with diffusers taped for testing

Cat 1 Air Leakage (FCH-2)

- First Mockup (22-24 Feb 06):
 - 70% Air Leakage in Initial Tests
 - 35% after first mitigation
 - 16% after second mitigation
- Second Mockup (subsequent date):
 - 35% Air Leakage in Initial Tests
- Third set of tests were report at approximately 20%

Category 1 and 2 Air Leakage (FCH-1)

First Series of Tests (Oct-Dec 05):

- Initial range of Cat 1+2 air leakage rates was 34% (AHU 6 4th floor) to 68% (AHU 5 3rd floor)
- After remediation, range was 26% (AHU 1 - 1st floor) to 59% (AHU 7 – 4th floor)

Second Series of Tests (May 06):

- AHUs 2 and 3 Second Floor
- Cat 1+2 was 43% of design airflow rate at 0.07 in. wg
- Cat 1 was 32% of design airflow rate at 0.07 in. wg.

Summary of Air Leakage Findings*

Type of Facility	Dates of Tests	Cat 1	Cat 2	Cat 1+2
FB-1	7-06	52	8	60
FB-2	7-06	43	2	45
FB 3	8-06	40-200	NA	NA
FB-4	11-06	44-48	NA	NA
FCH-1	11-05 to	NA	NA	34-68
	9-06	32	11	43
FCH-2	11-05 to	70-16	NA	NA
	5-06	35	NA	NA

^{*}Percentage of design airflow rate at 0.07 in. w.g.

GSA Air Leakage Criteria for UFAD Plenums at design static pressure (e.g., 0.07 in. wg or 17.5 Pa)

Test	∑ Air Leakage (Category 1 + 2)	Category 1
Mockup	0.1 cfm/ft ² floor area	0.03 cfm/ft ² floor area
Building Floor Plenums	0.1 cfm/ft ² floor area or 10% of design supply airflow rate, whichever value is smaller	0.03 cfm/ft² floor area or 3% of design supply airflow rate, whichever value is smaller
	value is smaller	value is smaller

Conclusions (1)

- > Air leakage consequences are significant:
 - ✓ Air leakage is an architectural design and general construction Issue.
 - ✓ Construction of an airtight plenum requires strict coordination of ten to twelve trades, and special construction techniques that have not been developed
 - ✓ Concrete
 - ✓ Masonry
 - ✓ Drywall
 - ✓ Millwork
 - ✓ Sealant and joint specialists
 - √ Carpenters
 - √ Sheet Metal
 - ✓ Plumbing
 - ✓ Electrical
 - √ Communications
 - ✓ Etc.
 - ✓ Predictions of air leakage are unreliable: testing is required at this time.
 - ✓ Air leakage testing results indicate GSA goal has not been met.

Conclusions (2)

- > Thermal mass of slab is a major issue for energy and control
- Heat and moisture transmission/condensation in the plenum is also a major issue
- Life safety codes need to address UFAD systems
- > Drainage of water from piping leaks or fire sprinkler discharge is a major issue
- > Access to underfloor equipment is difficult at best

Conclusions (3)

- Integrated design is essential between architects, engineers
- Testing procedures must be developed by coordinated effort among building code officials, and Standards writing organizations, such as ASTM, ASHRAE, NFPA, ASCE, IEEE, UL, SMACNA, ETC.