Energy Modeling Applications for Existing Buildings

Presented by:

Clark Denson
PE, CEM, BEMP, LEED® AP BD+C

4/27/12
Learning Objectives

1. List available methods and tools for energy modeling

2. Explain how energy modeling can be used at different times during the life of a building

3. Identify appropriate steps for using energy models to explore energy use in existing buildings

4. Understand how energy models can be used to estimate savings of ECMs/FIMs

5. Identify how energy models can be used as a part of an M&V plan to measure actual savings of ECMs/FIMs and ensure those measures are persisting.
What is an Energy Model?

- **Energy Model**
 - A mathematical representation of how building energy systems react to external or internal loads.
- **Whole-building simulation**
 - “An energy model that represents the operations of all building systems simultaneously as opposed to a specific system or area of a building.”
Why Do We Use Energy Modeling?

- Comparative Analysis - Decision-making tool
- Find areas of highest potential impact/savings
- Identify synergies to reduce equipment size
- Identify counter-intuitive building performance relationships
- Green Building certifications and labels
- Utility Rebates/Incentives
Energy Simulation Methods and Tools

• “Determining the most appropriate calculation methodology and energy analysis tool is perhaps one of the most challenging and important steps in the energy audit process.”
 ▫ ASHRAE Procedures for Commercial Building Energy Audits, 2nd Edition

• 2009 ASHRAE Fundamentals says to consider the following factors:
 ▫ Accuracy
 ▫ Sensitivity
 ▫ Versatility
 ▫ Speed and cost
 ▫ Reproducibility
 ▫ Ease of use

• More critical decisions require more accurate tools
Spreadsheet-based Calculators

Measure M1: Reduce supply air pressure setpoint for VAV system

Inputs
- Orig. SP: 1.5 in w.g.
- New SP: 1.00 in w.g.
- ΔP: 0.50 in w.g.
- \(\eta_{\text{Fan}} \): 0.6
- \(\eta_{\text{Motor}} \): 0.95

Demand and Energy Savings

<table>
<thead>
<tr>
<th>OA Temp Bin</th>
<th>AHU Run Hours (^{[1]})</th>
<th>CFM</th>
<th>Delta BHP</th>
<th>kW</th>
<th>kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.5</td>
<td>157</td>
<td>42.781</td>
<td>4.7</td>
<td>3.7</td>
<td>574</td>
</tr>
<tr>
<td>27.5</td>
<td>190</td>
<td>44.841</td>
<td>4.9</td>
<td>3.8</td>
<td>728</td>
</tr>
<tr>
<td>32.5</td>
<td>302</td>
<td>46.901</td>
<td>5.1</td>
<td>4.0</td>
<td>1,210</td>
</tr>
<tr>
<td>37.5</td>
<td>372</td>
<td>48.861</td>
<td>5.3</td>
<td>4.2</td>
<td>1,556</td>
</tr>
<tr>
<td>42.5</td>
<td>375</td>
<td>51.021</td>
<td>5.6</td>
<td>4.4</td>
<td>1,635</td>
</tr>
<tr>
<td>47.5</td>
<td>344</td>
<td>53.681</td>
<td>5.8</td>
<td>4.5</td>
<td>1,560</td>
</tr>
<tr>
<td>52.5</td>
<td>304</td>
<td>55.141</td>
<td>6.0</td>
<td>4.7</td>
<td>1,432</td>
</tr>
<tr>
<td>57.5</td>
<td>320</td>
<td>57.201</td>
<td>6.2</td>
<td>4.9</td>
<td>1,564</td>
</tr>
<tr>
<td>62.5</td>
<td>352</td>
<td>59.261</td>
<td>6.4</td>
<td>5.1</td>
<td>1,865</td>
</tr>
<tr>
<td>67.5</td>
<td>330</td>
<td>61.321</td>
<td>6.7</td>
<td>5.2</td>
<td>1,729</td>
</tr>
<tr>
<td>72.5</td>
<td>233</td>
<td>63.381</td>
<td>6.9</td>
<td>5.4</td>
<td>1,262</td>
</tr>
<tr>
<td>77.5</td>
<td>375</td>
<td>65.441</td>
<td>7.1</td>
<td>5.6</td>
<td>2,097</td>
</tr>
<tr>
<td>82.5</td>
<td>384</td>
<td>67.501</td>
<td>7.3</td>
<td>5.8</td>
<td>2,215</td>
</tr>
<tr>
<td>87.5</td>
<td>164</td>
<td>69.661</td>
<td>7.6</td>
<td>5.9</td>
<td>916</td>
</tr>
<tr>
<td>92.5</td>
<td>82</td>
<td>71.821</td>
<td>7.8</td>
<td>6.1</td>
<td>502</td>
</tr>
<tr>
<td>97.5</td>
<td>7</td>
<td>73.681</td>
<td>8.0</td>
<td>6.3</td>
<td>44</td>
</tr>
</tbody>
</table>

Equations:

- **[A]** \(\text{CFM} = 412 \times \text{OAT} + 33,511 \) (See trended data below)
- **[B]** \(\text{Delta BHP} = \text{CFM} * \frac{(p/p_{\text{std}})}{(s_{\text{original}} - s_{\text{new}})} \times 6356 / \eta_{\text{Fan}} \) (\(p/p_{\text{std}} = 0.83 \) in Denver)
- **[C]** \(\text{kW}_{\text{save}} = (\text{Delta BHP})^* 0.746 / \eta_{\text{Motor}} \)
- **[D]** \(\text{kWh}_{\text{save}} = (\text{kW}_{\text{save}} \times \text{hours}_{\text{run}}) \)
- **[E]** Peak kW savings = kW savings at 97 F OAT

Trend Data:

Supply Air Flow vs. OAT

\(y = 412x + 33511 \)

Peak demand savings:
Spreadsheets vs. Whole-building Simulation

• Spreadsheets
 ▫ Simpler to understand and review
 ▫ Encouraged by several utility incentive programs
 ▫ Limited in their applicability

• Whole-building simulation
 ▫ More comprehensive measures
 ▫ Accounts for interactive effects
 ▫ More training to master
Energy Simulation Approaches and Tools

• Steady-state calculations
 ▫ Degree-day method
 ▫ Balance-point Temperature
 ▫ Limited to thermal performance & plant efficiency

• Bin Method
 ▫ Provides reasonable savings for preliminary assessments
 ▫ Using a more detailed tool will not always result in more accurate results if based on estimated operation
 ▫ Limited in its application

• Whole-building modeling/simulation
 ▫ Captures the dynamic nature of commercial buildings
 ▫ Complexity of an hourly simulation model may be required for projects where deeper level of analysis is required, such as:
 • Building Envelope measures
 • Comprehensive projects with interactive measures
 • Documenting tax incentives or green ratings
 • Effect of building massing on cooling load
 • Capability of program to model specific features and technologies such as VRF, daylighting, thermal ice storage, etc.
Whole-Building Energy Simulation

- eQUEST
- Trane TRACE
- Carrier HAP
- EnergyPlus
- EnergyPro
- VisualDOE
- TRNSYS
- IES <VE>
- AECOsim
- ESP-r
- Many others...

http://apps1.eere.energy.gov/buildings/tools_directory/
Anatomy of an Energy Model

• External Loads
 ▫ Shell Geometry and Thermal Performance
 ▫ Weather Data

• Internal Loads
 ▫ Lighting, Occupancy, Plug Loads
 ▫ Utilization Profiles

• Mechanical Equipment
 ▫ HVAC
 ▫ Service Water Heating

• Utility Rates
Shell Geometry and Thermal Performance

REALITY

Simplify

ENERGY MODEL

Text-based Entry

2-D CAD (dwg files)

3-D BIM Import
Weather Data - Annual Weather Files

- Necessary for annual energy and economic analysis
- Useful for developing HVAC design strategies
- Must include 8760 hours
- Generally from sets of averaged data (TMY)
- Actual weather data may be preferred in EBCx

RMI Building Energy Modeling Workshop
Lighting, Occupancy, & Plug Loads

Peak Power and Occupancy
- Total watts of all connected power
- Peak number of occupants
- Can be input with density values

Fraction of Heat Gain to space
- Assign proportional amounts of heat to space vs. plenum

Fractional Schedules
- Daily/Weekly/Annual Occupancy Schedules
- Hourly fractional multiplier for peak values
- Daylight Dimming or Occupancy Sensors
Mechanical Equipment

Chilled Water Cooling Systems
- Air-cooled chillers or closed-loop cooling towers serving chillers
- Water-cooled chillers served by open-loop cooling towers
- Evaporatively-cooled chillers

Heating Systems
- Central boiler plant
- Steam boilers
- Hot water boilers

Distribution Systems
- Air handlers with chilled water cooling coils and/or hot water heating coils
- Fan coils
- Radiators
- Chilled beams / radiant panels
Mechanical Systems
Part-load Performance Curves

• Fan power = f(airflow) for VAV systems
• “Canned” & custom curves

Fan Curve Issues:
- “Canned” VSD fan curves are often optimistic
- If creating a custom curve, plot it and check it, set appropriate minimum value

• Similar curves for pumps, chillers, boilers

Source: DOE2.2 Volume 2 Dictionary
Utility rates
Types of Charges and Rate Structures

- **Monthly Charge**: Fixed fee for providing energy services
 - $35 per month

- **Energy Charge**: Unit cost for total quantity of energy consumed
 - $0.06 per kWh

- **Demand Charge**: Fee for highest or peak amount of energy used
 - $7.53 per kW

- **Power Factor Charge**: Penalty for lower than optimum power factor
 - $0.40 per KVAR

- **Block Charge**: Unit charge based on different blocks of energy use or demand
 - 0–350 kWh: $0.06 per kWh
 - 350–700 kWh: $0.04 per kWh
 - 700+ kWh: $0.02 per kWh

- **Time of Use Rate**: Prices change during peak and off-peak times
 - Peak Time: $0.24 per kWh
 - Off Peak Time: $0.06 per kWh
Life-Cycle of a Building

New Construction

- Schematic Design
- Design Development
- Construction Documents

Existing Buildings

- Operations
- Existing Building Commissioning
- Measurement & Verification
New Construction: When Do We Use Energy Modeling?

Typical energy modeling timeframe

Level of Effort

Performance Impact

Level of Effort

Project Start

Project Finish

Time
New Construction: Setting Energy Target/Goals

• “If you aim at nothing, you’ll hit it every time.” – Zig Ziglar

• An OPR, written during the pre-design phase, is essential to establishing energy targets for the design team to strive for.

• Energy modeling facilitates setting your target
New Construction: Energy Modeling Process

Schematic Design
- “Wizard” level models
- Load Reduction Analysis
- System Comparisons
- Combination Runs

Design Development
- System Optimization
- Fine-tuning of details
- Further Development of ECMs

Construction Documents
- Value Engineering
- Final Model
- Document for LEED, Utility rebates, etc.
Existing Buildings: AABC Energy Management Guidelines

1. Project Assessment
 ▫ Goal Setting
2. Energy Use Exploration
 ▫ Annual Energy Balance
 ▫ Model Development
3. Site Investigation
 ▫ Data Collection and Calibration
4. ECM/FIM and EBCx Analysis
5. Implementation
6. Final Acceptance
 ▫ Measurement and Verification
7. Continuous Energy Management
 ▫ Update model as a part of Ongoing Commissioning
Project Assessment:
Setting Energy Efficiency Goals

Use Energy Modeling to Quantify Targets

- kBTU/sf/yr
- % reduction below ASHRAE 90.1
- No mechanical cooling

Goal Setting Charrette

Types of Goals

Overall Target Values
- EISA 2007
- EUI < 35 kBTu/sf/yr
- Net Zero operating carbon
- Demand < 3 W/sf

Comparative
- 55% better than ASHRAE 90.1-2007
- Lowest EUI of any U.S. museum
- 80% water reduction from current use

Certifications
- LEED Platinum
- Energy Star score
- ASHRAE Building Energy Quotient
- Living Building Challenge

End Use Specific
- 80% reduction in lighting energy from natural daylight
- 100% of heating from waste heat and solar thermal

RMI Building Energy Modeling Workshop
Project Assessment: Observation of Potential Measures

- Similar to ASHRAE Level 1 (Walk-through) Audit
- Estimate rough energy cost savings and payback
- No energy modeling necessary
Energy Use Exploration: Annual Energy Balance

- Based on available energy data
- May not require energy model
- Created by estimating, measuring, or modeling each energy end-use
- Energy Model Development
 - Helpful in verifying results of the utility consumption analysis
 - Outputs are only as good as the inputs
 - Useful for analysis of potential ECMs/FIMs
 - Should be calibrated to utility bills
Site Investigation: Data Collection

- On-site data collection serves two purposes:
 - Identify actual building operation for use in model calibration
 - Identify potential Energy Conservation Measures

- Areas of Interest
 - Building Geometry/Envelope
 - Internal Loads
 - Airside Systems
 - Waterside Systems
 - Controls and Operation
Site Investigation: Data Collection

• Building Geometry/Envelope
 ▫ Building Orientation
 ▫ Window-to-Wall Ratio
 ▫ Effective R-value
 ▫ Mass Effects
 ▫ Building Infiltration

2D drawings
Satellite images
Google Earth
Site Investigation: Data Collection

Internal Loads

- Concentrated Process Loads
 - Kitchens
 - Servers
 - Elevators
 - DHW
- Unoccupied Loads
 - Lighting
 - Equipment
 - Process
- Frequency of Use

Gathering Data for Building Simulation Model Calibration
Site Investigation: Data Collection

Airside & Waterside Systems
- Many moving parts
- Integrated Control Strategies
- Check visible conditions of equipment
- Analyze trend data for proper operation of controls

Data Most Relevant to Calibration
- Schedules
 - On/Off Status
 - Unoccupied setpoints
 - Fan cycling?

![Frozen Damper Linkage](image)
Site Investigation: Data Collection

Airside & Waterside Systems

Data Most Relevant to Calibration

- **Air-side**
 - Outside Air Settings
 - Economizer Function
 - VAV box Airflow Reset
 - Supply Air Temperature Reset

- **Equipment Efficiency**
 - Fans
 - Pumps
 - RTUs
 - Boilers
 - Chillers

Outside Air, Anyone?
Site Investigation: Data Collection

Airside & Waterside Systems

Data Most Relevant to Calibration

- **Water-side**
 - Hydronic Loop Flow & Pressure & Reset Controls
 - Chilled Water Temperature & Reset Controls
 - Condenser Water Temperature & Reset Controls

- **Boiler & Chiller loading/cycling**
ECM/FIM and EBCx Analysis

- Energy Model Calibration
- Estimate Energy Savings of ECMs/FIMs
- Validate savings estimates
- Bundle measures to maximize payback
What is Model Calibration?

• A process where model inputs are adjusted so that the model outputs correlate better to actual performance

• Goals:
 ▫ Enhanced model accuracy
 ▫ Increased level of confidence in simulation results
ECM/FIM and EBCx Analysis: Model Calibration

- **Step 1: Calibrate to known data**
 - 1a: **Energy Demand**
 - Installed lighting power, plug loads, peak occupants
 - Equipment capacities
 - 1b: **Energy Consumption**
 - BAS trends and setpoints
 - Known equipment or occupant schedules
 - Weather data

- **Step 2: Calibrate to unknown data**
 - Adjust unknown load schedules, infiltration, efficiencies, and part-load performance for fine tuning
ECM/FIM and EBCx Analysis: Model Accuracy Criteria

- ASHRAE Guideline 14, IPMVP, and FEMP all provide various accuracy criteria
- Mean Bias Error (ERR)
 - A measure of the model accuracy relative to the mean of the data set
- Coefficient of variation of the Root Mean Squared Error [CV(RSME)]
 - A measure of the residuals of the data set not accounted for by the model

<table>
<thead>
<tr>
<th>INDEX</th>
<th>ASHRAE 14</th>
<th>IPMVP</th>
<th>FEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR_{month}</td>
<td>±5 %</td>
<td>±20 %</td>
<td>±15 %</td>
</tr>
<tr>
<td>ERR_{year}</td>
<td>---</td>
<td>---</td>
<td>±10 %</td>
</tr>
<tr>
<td>CV(RMSE$_{month}$)</td>
<td>±15 %</td>
<td>±5 %</td>
<td>±10 %</td>
</tr>
</tbody>
</table>
Model Calibration

<table>
<thead>
<tr>
<th></th>
<th>Uncalibrated Model</th>
<th>Calibrated Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV(RMSE)</td>
<td>16.2%</td>
<td>3.3%</td>
</tr>
<tr>
<td>NMBE</td>
<td>12.6%</td>
<td>2.6%</td>
</tr>
</tbody>
</table>
ECM/FIM and EBCx Analysis: Calculating and Validating Savings

- Using the calibrated energy model as a baseline, apply ECMs/FIMs and calculate savings.
- Validate estimated savings against previous experience of actual savings or case studies.
- Based on project financing, group/bundle measures to meet project energy goals.

Figure 1. Site Energy Savings and Simple Payback Period by Measure Type

A Study on Energy Savings and Measure Cost Effectiveness of Existing Building Commissioning
Final Acceptance: Measurement & Verification

Possible Causes

- Differing Weather
- Differing Building Usage
- Differing Control
- Equipment Installation and O&M
- Sub-optimal System Operations
Final Acceptance: Measurement & Verification

- To measure the actual savings of each ECM, consider sub-metering and data trending.

- IPMVP, ASHRAE 14, and FEMP provide multiple ways to develop and implement an M&V plan

- More energy model calibration may be needed
 - Calibrate Pre-retrofit and Post-retrofit models to actual weather and operational data

- M&V can help to identify systems that are not operating as intended
Continuous Energy Management: Measure Persistence

- Use the energy model to estimate impact on savings for ECMs/FIMs found not to be persisting.

- Coupling sub-metered data with updating the model can help to ensure that the savings from previously installed measures are persisting.
Continuous Energy Management: Measure Persistence
Continuous Energy Management: Measure Persistence
Continuous Energy Management: Energy Model Maintenance

- The energy model is an investment for ongoing commissioning and continuous improvement.

- In the hands of a skilled modeler, the model can be used to simulate specific conditions, operating schedules, different utility rates.

- A calibrated energy model can be a valuable decision-making tool, both for new and existing buildings.
Resources

- DOE Building Energy Software Tools Directory
- Rocky Mountain Institute BEM Workshop
- ASHRAE Procedures for Commercial Building Energy Audits, 2nd Edition
- AABC Energy Management Guideline
- Calibrating Simulation Models for Existing Buildings
- A Study on Energy Savings and Measure Cost Effectiveness of Existing Building Commissioning
Thank you!